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Introduction. The construction

log(1 − 3xh − h3) =
∞∑

n=0

Sn(x)hn

produces a population of polynomials

S0(x) = 0
S1(x) = −3x

S2(x) = − 9
2x2

S3(x) = −1 − 9x3

S4(x) = −3x − 81
4 x4

S5(x) = −9x2 − 243
5 x5

S6(x) = − 1
2 − 27x3 − 243

2 x6

S7(x) = −3x − 81x4 − 2187
7 x7

S8(x) = − 27
2 x2 − 243x5 − 6561

8 x8

S9(x) = − 1
3 − 54x3 − 729x6 − 2187x9

...

which are among a quartet of polynomial systems of special interest to Ahmed
Sebbar.1 Sebbar has remarked—without argument, but as is (with the
assistance of Mathematica) easily confirmed, and as Ray Mayer has by an
ingenious argument quite recently deduced—that the Sn(x) are solutions of

1 Private communications 2014 and 2017.
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the 3rd order linear differential equation

(4x3 + 1)f ′′′ + 18x2f ′′ − (3n2 + 3n − 10)xf ′ − n2(n + 3)f = 0

Mayer’s argument, however, draws criticallyupon features special to the problem
at hand, specifically that the generating function (i) is the logarithm of (ii) a
cubic, that can be factored: 1 − 3xh − h3 = (α − h)(β − h)(γ − h) which by
α(x)β(x)γ(x) = 1 permits one to write

log(1 − 3xh − h3) = log(1 − h/α) + log(1 − h/β) + log(1 − h/γ)

=
∞∑

n=1

− 1
n

( 1
αn

+ 1
βn

+ 1
γn

)
hn

with the remarkable implication that

Sn(x) = − 1
n

( 1
αn

+ 1
βn

+ 1
γn

)

Mayer’s argument leads, moreover, to expressions that are much too enormous2
to be managed without computer assistance (though the final simplifications,
which also require computer assisstance, are dramatic).

Chapter 22 of Abramowitz & Stegun’s Handbook of Mathematical Functions
(1964) provides generating functions (§22.9) and differential equations (§22.6)
for all the classic orthogonal polynomials. Those generating functions (with the
exception only of log(1− 2xh + h2), which generates Chebyshev polynomials of
the 1st kind) possess none of the special features of which Mayer made use, and
the associated differential equations are classical, originally obtained by hand,
in days before computer assistance was a possibility.

I have yet to discover in the literature an account of howpeople“standardly”
proceed

generating function −→ associated differential equations

My objective here is to describe my own home-grown procedure. We will look
first to some representative orthogonal polynomials, then to the more general
(non-orthogonal?) of interest to Sebbar. My method employs Mathematica as
an initially inessential convenience, and I will be quoting details taken from a
companion notebook.3

I work from the elementary observation that if G0(x, h) generates
polynomials Pn(x)

G0(x, h) =
∞∑

n=0

Pn(x)hn

then
Gk(x, h) = ( d

dx )k G0(x, h) : k = 1, 2, 3, . . .

generates the kth derivatives of those polynomials. My method gains essential

2 See “Ray Mayer’s reconstruction of Ahmed Sebbar’s DE” (3 November
2017).

3 “Polynomial DE Worksheet 1” (November 2017).
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leverage from the observation (Abramowitz & Stegun, §22.6) that the
differential equations satisfied by orthogonal polynomials are in every instance
of 2nd order and linear,4 on which basis we expect to have

a G2(x, h) + b G1(x, h) + c G0(x, h) = 0

We notice also that in every case (i) a and b are n-independent functions of x,
and (ii) c is an x-independent function of n. I promote (i) to the status of a
working hypothesis (one of which Mayer had no need).

Methodological laboratory: the Legendre polynomials. The function

G0(x, h) = 1√
1 − 2xh + h2

generates the Legendre polynomials

P0(x) = 1
P1(x) = x

P2(x) = 1
2 (−1 + 3x2)

P3(x) = 1
2 (−3x + 5x3)

P4(x) = 1
8 (3 − 30x2 + 35x4)

P5(x) = 1
8 (15x − 70x3 + 63x5)

P6(x) = 1
16 (−5 + 10x2 − 315x4)

P7(x) = 1
16 (−35x + 315x3 − 693x5 + 429x7)

...

Writing

a G2(x, h) + b G1(x, h) + c G0(x, h) =
∞∑

n=0

Zn(x; a, b, cn)hn

with

G1(x, h) = h
(1 − 2xh + h2) 3

2
, G2(x, h) = 3h2

(1 − 2xh + h2) 3
2

we with computational assistance obtain

Z0 = c0

Z1 = b + c1x

Z2 = 1
2 (6a − c2 + 6bx + 3c2x

2)

Z3 = 1
2 (−3b + 30ax − 3c3x + 15bx2 + 5c3x

3)

Z4 = 1
8 (−60a + 3c4 − 60bx + 420ax2 − 30c4x

2) + 140bx3 + 35c4x
4)

Z5 = 1
8 (15b − 420ax + 15c5x − 210bx2 + 1260ax3 − 70c5x

3 + 315bx4 + 63c5x
5)

...

4 The literature must provide an account of why this is necessarily so.
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and proceed to solve serially the equations Zn = 0. From Z0 = 0 and Z1 = 0
we have

c0 = 0 and b = −c1x

Substitute the latter into Z2 and obtain Z2 = 1
6 (6a − c1x2 − c2 + 3c2x2) = 0,

giving
a = 1

6 (6c1x
2 + c2 − 3c2x

2)

Substitute those values of a and b into Z3 and obtain

Z3 = 1
2 (3c1 + 5c2 − 3c3)x + 5

2 (3c1 − 3c2 + c3)x2

Set the coefficients of x and x2 both equal to 0, solve for {c2, c3} and get

c2 = 3c1, c3 = 6c1

Return with the former to the preceding description of a and get5

a = 1
2 (1 − x2)c1

b = −xc1

Introduce those expressions into Z4 and get

Z4 =
(
− 15

4 c1 + 3
8c4

)
+

(
75
2 c1 − 15

4 c4

)
x2 +

(
− 175

4 c1 + 35
8 c4

)
x4

in which the requirement that all coefficients vanish gives

c4 = 10c1

Z5 leads similarly to
c5 = 15c1

So we have

1
2c1

{
(1 − x2)Pn

′′ − 2xPn
′ + cnPn = 0

}
with






c0 = 0
c1 = 2
c2 = 6
c3 = 12
c4 = 20
c5 = 30

If we accept the conjecture6 that cn = n(n + 1) then

(1 − x2)Pn
′′ − 2xPn

′ + n(n + 1)Pn = 0

which is precisely the familiar Legendre differential equation, of which the

5 This suspended evaluation of a appears to be characteristic of the method.
6 It would be nice to have an inductive proof.
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general solution can be written αPn(x) + βQn(x). Here the Qn(x) are (non-
polynomial) “Legendre functions of the 2nd kind,” the first few of which are

Q0(x) = P0(x) arctanh(x)
Q1(x) = P1(x) arctanh(x) − 1
Q2(x) = P2(x) arctanh(x) − 3

2x

Q3(x) = P3(x) arctanh(x) −
(

15
6 x2 − 2

3

)

Discussion of the bivariate Legendre functions Pν(x), Qν(x) and trivariate
Legendre functions P (µ)

ν (x), Q(µ)
ν (x) can be found in Chapter 59 of Spanier

& Oldham’s Atlas of Functions (1987).

Chebyshev polynomials of the first kind. The function

G0(x, h) = 1 − xh
1 − 2xh + h2

=
∞∑

n=0

Tn(x)hn

generates Chebyshev polynomials of the 1st kind:

T0(x) = 1
T1(x) = x

T2(x) = −1 + 2x2

T3(x) = −3x + 4x3

T4(x) = 1 − 8x2 + 8x4

T5(x) = 5x − 20x3 + 16x5

T6(x) = −1 + 18x2 − 48x4 + 32x6

...

Proceeding as before, we write

a G2(x, h) + b G1(x, h) + c G0(x, h) =
∞∑

n=0

Zn(x; a, b, cn)hn

and by assisted computation obtain

Z0 = c0

Z1 = b + c1x

Z2 = 4a − c2 + 4bx + 2c2x
2

Z3 = −3b + 24ax − 3c3x + 12bx2 + 4c3x
3

Z4 = −16a + c4 − 16bx + 96ax2 − 8c4x
2 + 32bx3 + 8c4x

4

Z5 = 5b − 120ax + 5c5x − 60bx2 + 320ax3 − 20c5c
3 + 80bx4 + 16c4x

5

Proceeding again serially to the solution of the equations Zn = 0, we find
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c0 = 0 and b = −c1x

∴ Z2 = 4a − 4c1x
2 − c2 + 2c2x

2 ⇒ a = 1
4 (4c1x

2 + c2 − 2c2x
2)

∴ Z3 = (3c1 + 6c2 − 3c3)x + (12c1 − 12c2 + 4c3)x3 ⇒
{ c2 = 4c1

c3 = 9c1

∴ a = (1 − x2)c1 : Note again the suspended evaluation of a.

∴ Z4 = (c4 − 16c1) − (8c4 − 128c1)x2 + (8c4 − 128c1)x4 ⇒ c4 = 16c1

∴ Z5 = (5c5 − 125c1)x − (20c5 + 500c1)x3 + (16c5 − 400c1)x5 ⇒ c5 = 25c1

These results make plausible the conjecture that cn = n2c1. Exercising our
option to set c1 = 1, we find that the Chebyshev polynomials Tn(x) satisfy
“Chebyshev’s differential equation”

(1 − x2)Tn
′′ − xTn

′ + n2Tn = 0

of which the general solution7 is of the form

αTn(x) + β
√

1 − x2 Un−1(x) : n = 1, 2, 3, . . .

α + β arcsin(x) : n = 0

where the Un(x) are Chebyshev polynomials of the 2nd kind, generated by
(1−2xh+h2)−1 =

∑∞
n=0 Un(x)hn. Reminiscent of a result mentioned on page 2

is the fact7 that one can describe the polynomials Tn(x) by expressions

Tn(x) = 1
2 (αn + β n) :

{
α(x) = x +

√
x2 − 1

β(x) = x −
√

x2 − 1

that on their face do not look much like polynomials. This result is made
somewhat less mysterious by the observations8 that the polynomials Tn(x)
defined

log(1 − 2xh + h2) =
∞∑

n=0

Tn(x)hn

are in fact also solutions of Chebyshev’s equation, and that

1 − 2xh + h2 = (α− h)(β − h) =
(
1 − h

α

)(
1 − h

β

)
by αβ = 1

entails
∞∑

n=0

Tn(x)hn = log
(
1 − h

α

)
+ log

(
1 − h

β

)

=
∞∑

n=0

− 1
n

( 1
αn

+ 1
β n

)
hn

7 See Spanier & Oldham, page 196.
8 See “Ray Mayer’s reconstruction of Ahmed Sebbar’s DE,” page 7.
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We expect Tn(x) to be a linear combination of Tn(x) and
√

1 − x2 Un−1(x), and
some Mathematica -assisted experimentation indicates that in fact

Tn(x) = − 2
nTn(x)

This amounts to the statement that
1
αn

+ 1
β n

= αn + β n

which follows immediately from the circumstance that αβ = 1.

Hermite polynomials. The Hermite polynomials Hn(x) are generated

e2xh−h2
=

∞∑

n=0

1
n!Hn(x)hn

H0(x) = 1
H1(x) = 2x

H2(x) = −2 + 4x2

H3(x) = −12x + 8x3

H4(x) = 12 − 48x2 + 16x4

H5(x) = 120x − 160x3 + 32x5

H6(x) = −120 + 720x2 − 480x4 + 64x6

...
The presence of the factorial requires that we modify our procedure slightly;
instead of working from the generaating function we work directly from the
polynomials, writing

Zn = aHn
′′ + bHn

′ + cnHn

This gives

Z0 = c0

Z1 = 2b + 2c1x

Z2 = 8a + 8bx + c2(−2 + 4x2)

Z3 = 48ax + b(−12 + 24x2) + c3(−12x + 8x3)

Z4 = a(−96 + 192x2) + b(−96x + 64x3) + c4(12 − 48x2 + 16x4)

From Zn = 0 we obtain

c0 = 0 and b = −c1x

∴ Z2 = (8a − 2c2) + (−8c1 + 4c2)x2 ⇒
{

c2 = 2c1

a = 1
4c2 = 1

2c1

∴ Z3 = (36c1 − 12c3)x + (−24c1 + 8c3)x2 ⇒ c3 = 3c1

∴ Z4 = (−48c1 + 12c4) + (192c1 − 48c4)x2 + (−64c1 + 16c4)x4 ⇒ c4 = 4c1

∴ Z5 = (−600c1 +120c5)x+(800c1 − 160c5)x3 +(−160c1 +32c5)x5 ⇒ c5 = 5c1
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We are led thus to Hermite’s differential equation

Hn
′′ − 2xHn

′ + 2nHn = 0

of which the general solution is

αHn(x) + β Hypergeometric1F1
(
− n

2 , 1
2 , x2

)

Sebbar polynomials of the first kind. The method illustrated above could be used
to discover—by hand, with pen and paper—the differential equations satisfied
by all of the classic orthogonal polynomials. We look now to the polynomials
Sn(x) described on page 1. It will emerge that—though the work could, in
principle, still be done by hand—computer-assisted management of the details
is almost indispensable.

Since no 1
n! -factor enters into their construction, we could work either from

their generator G0(x, h) = log(1 − 3xh − h3) or directly from the polynomials
themselves. I adopt here and henceforth the latter option because it was in
those terms that I first approached the problem of reproducing Sebbar’s DEs,
and was led to the conclusion that the problem is intractable = a problem
worthy of the genius of Ray Mayer.

first approach: failure

We attempt to employ unchanged the method that worked when we were
discussing orthogonal polynomials, which is to say: we work from

Zn = aSn
′′ + bSn

′ + cnSn

which gives
Z0 = 0
Z1 = −3b − 3xc1

Z2 = −9a − 9bx − 9
2x2c2

Z3 = −54ax − 27bx2 − (1 + 9x3)c3

Z4 = −243ax2 − 3
4b(4 + 108x3) − 3

4 (4x + 27x4)c45

Solving Z1 = Z2 = 0 for {a, b} we find

a = 1
2x2(2c1 − c2)

b = −xc1

Which when fed into Z3 = 0 gives
c2 = c1

c3 = 0

Z4, having digested all those results, reads Z4 = 3(c1 − c4)x − 81
4 (2c1 + c4)x4.

From Z4 = 0 we are led thus to a contradiction
c4 = c1

c4 = −2c1

from which c1 = 0 provides the only escape. But then {a = b = cn = 0}; the
theory has collapsed into vacuous triviality.
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second approach: failure

To expand the playing field, give us more parameters to play with, we assume
that the Sn satisfy differential equations of 3rd order:

Zn = aSn
′′′ + bSn

′′ + cnSn
′ + dnSn

We retain—for no better reason that it worked before—the assumption that
{a, b} are n-indepedent. Then

Z0 = 0
Z1 = −3c1 − 3xd1

Z2 = −9b − 9xc2 − 9
2x2d2

Z3 = −54a − 54bx − 27x2c3 − (1 + 9x3)d3

Z4 = −486ax − 243bx2 − (3 + 81x3)c4 − (3x + 81
4 x4)d4

Z5 = −2916ax2 − b(18 + 972x3) − (18x + 243x4)c5 − (9x2 + 243
5 x5)d5

Proceeding as before,9 we are led from Z5 = 0 to another contradiction

d5 = 37d2

d5 = 40d2

with familiar catastrophic consequences. The seeds of this development are seen
to have been sown at Z1 = 0, which entailed c1 = d1 = 0.

third approach: success

We work now from

Zn = aSn
′′′ + bSn

′′ + cnxSn
′ + dnSn

where the x has been introduced into the coefficient of Sn
′ to avoid the fatal

result just mentioned. We then find

Z0 = 0
Z1 = −3x(c1 + d1)

Z2 = −9b − 9x2(c2 + 1
2d2)

Z3 = −54a − 54bx − 27x3c3 − (1 + 9x3)d3

From Z1 = 0 we now have
c1 = −d1

Z2 = 0 gives
b = −x2(c2 + 1

2d2)

9 The details are spelled out in “Polynomial DE Worksheet 1.”3
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and when those results are fed into Z3 and the result solved for a we have

a = − 1
54d3 + 1

54x3(54c2 − 27c3 + 27d2 − 9d3)

Feeding the results now in hand into Zn : n = 4, 5, 6, . . . (the Zn that “lie
upstream” from Z3), we find that

Z4 = xX4,1 + x4X4,4

Z5 = x2X5,2 + x5X5,5

Z6 = X6,0 + x3X6,3 + x6X6,6

Z7 = xX7,1 + x4X7,4 + x7X7,7

Z8 = x2X8,2 + x5X8,50 + x8X8,8

Z9 = X9,0 + x3X9,3 + x6X9,6 + x9X9,9

Z10 = xX10,1 + x4X10,4 + x7X10,7 + x10X10,10

Z11 = x2X11,2 + x5X11,5 + x8X11,8 + x11X11,11

Z12 = X12,0 + x3X12,3 + x6X12,6 + x9X12,9 + x12X12,12

Here Xi,j is linear combination of {ci, di} and of those parameters {c2, c3, d2, d3}
whose suspended evaluation has not yet been accomplished.10 Note that Zn

(n > 3) is a polynomial of degree n in which all powers differ by 3, and in this
respect mimics a conspicuous property of Sn.11

Z4 = 0 is seen to provide two conditions, which we solve for {c4, d4} and
feed upstream. The resulting Z5 provides two conditions which we solve for
{c5, d5} and again feed upstream. The resulting Z6 provides three conditions,
from which we obtain evaluations of {c6, d6} and a suspended evaluation of
(say) c2, which therefore disappears from all upstream X-factors. Continuing
with this “iterative exercise in suspended evaluation,” we arrive finally at results
that can be expressed





c6

c7

c8

c9

c10




= 1

27d3





58
79
103
130
160




,





d6

d7

d8

d9

d10




= 1

27d3





162
245
352
486
650





and which invite this rescaling:

1
27d3 −→ 1

10 The Mathematica -assisted construction of Xi,j is instantaneous.
11 The corresponding power interval in the theory of orthogonal polynomials

is not 3 but 2; all such polynomials are either even or odd.
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We now pursue the conjecture that cn (similarly dn, both rescaled)
can be developed as a cubic in n:

cn = pn3 + qn2 + rn + s

To discover suitable values of {p, q, r, s} (= test the conjecture) we construct

M =





63 62 6 1
73 72 7 1
83 82 8 1
93 92 9 1





and observe that

M





p
q
r
s



 =





58
79
103
130



 =⇒





p
q
r
s



 =





0
3/2
3/2
−5





from which (and by a similar argument) we obtain

cn = 3
2 n2 + 3

2 n − 5

dn = 1
2 n3 + 3

2 n2

Returning with this information to previous descriptions of {a, b} we obtain
these (similarly rescaled) suspended evaluations:

a = − 1
2 (1 + 4x3)

b = −9x2

A final rescaling (multiply all terms by −2) provides

Zn = (1 + 4x3)Sn
′′′ + 18x2Sn

′′ − (3n2 + 3n − 10)xSn
′ − n2(n + 3)Sn = 0

which (see again page 2) is precisely the result we sought to establish—the
equation asserted by Sebbar, and established by Mayer by quite other means.

Sebbar polynomials of the second kind. We look now to the polynomials Rn(x)
defined by

log(1 + 3xh2 − h3) =
∞∑

n=0

Rn(x)hn

These, when spelled out,12 are seen to lack some of the properties we usually
associate with generated sets of polynomials: they are transparently not linearly
independent, and the degree of Rn, instead of being equal to n, has become an
irregular function of n that never exceets 1

2n. But they will be found to satisfy

12 For computational details, see “Polynomial DE Worksheet 2” (November
2017).
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R0(x) = 0
R1(x) = 0
R2(x) = 3x

R4(x) = − 9
2x2

R5(x) = 3x

R6(x) = 1
6 (−3 + 54x3)

R7(x) = −9x2

R8(x) = − 3
4 (−4x + 27x4)

R9(x) = 1
3 (−1 + 81x3)

R10(x) = 27
10 (−5x2 + 18x5)

differential equations that differ only slightly from those satisfied by the Sebbar
polynomials Sn(x). The argument is a straightforward variant of the argument
rehearsed in the preceeding section, but—because degree ascents so slowly
within {Rn(x)}, which is so “straggle-toothed”—must be carried to much
higher order to produce useful results.

We work again from

Zn = aRn
′′′ + bRn

′′ + cnxRn
′ + dnRn

where by assisted calculation

Z0 = 0
Z1 = 0
Z2 = 3x(c2 + d2)
Z3 = −d3

Z4 = −9b − 9x2(c4 + 1
2d4)

Z5 = 3x(c5 + d5)

Z6 = 54a + 54bx + 27x3c6 + 1
6 (−3 + 54x3)d6

From Z0 = Z1 = · · · = Z6 = 0 we obtain temporary valuations of c2, d3, b, c5, a
which when fed into Z7 produce Z7 = x2(18c4 − 18c7 + 9d4 − 9d7) whence
c7 = 1

2 (2c4 + d4 − d7). From this point the iterative process proceeds straight-
forwardly, though the irregular slow growth of degree " order n requires that
one proceed all the way to Z14 before one has acquired the suspended evaluations
that permit one to write





c14

c15

c16

c17



 = 1
54d6





−268
−310
−355
−403



 ,





d14

d15

d16

d17



 = 1
54d6





1078
1350
1664
2023
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Proceeding as before, we construct

M =





143 142 14 1
153 152 15 1
163 162 16 1
173 172 17 1





and find that

M





p
q
r
s



 =





−268
−310
−355
−403



 =⇒





p
q
r
s



 =





0
−3/2
+3/2

5





M





p
q
r
s



 =





1078
1350
1664
2023



 =⇒





p
q
r
s



 =





1/2
−3/2

0
0





We conclude that the {c, d} parameters—rescaled by
1
54d6 −→ 1

—can be described
cn = − 3

2 n2 + 3
2 n + 5

dn = 1
2 n3 − 3

2 n2

in consequence of which the similarly rescaled parameters {a, b} acquire the
suspended valuations

a = 1
2 (1 + 4x3)

b = 9x2

A final rescaling (multiply all terms by +2) provides

Zn = (1 + 4x3)Rn
′′′ + 18x2Rn

′′ − (3n2 − 3n − 10)xRn
′ − n2(3 − n)Rn = 0

Zn = (1 + 4x3)Sn
′′′ + 18x2Sn

′′ − (3n2 + 3n − 10)x Sn
′ − n2(3 + n)Sn = 0

Here I have repeated the corresponding Sn equation (page 11) to make evident
the similarity—remarkable in view of the fact that the polynomials themselves
are so dissimilar—of those differential equations; each goes over to the other by
simply reversing the sign of n.

Sebbar polynomials of the third kind. Comparison of the generators

log(1 − 3xh − h3) and log(1 + 3xh2 − h3)

of the Sebbar polynomials of the first and second kinds with the generator13

log(1 − 2xh + h2)

of the Chebyshev polynomials Tn(x) establishes a sense in which “the Sebbar
polynomials are Chebyshev-like.” The Sebbar polynomials of the third and

13 See again page 6.
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fourth kinds
(1 − 3xh − h3)−ν and (1 + 3xh2 − h3)−ν

are in that same sense reminiscent of the generators

(1 − 2xh + h2)−ν , (1 − 2xh + h2)−
1
2 and (1 − 2xh + h2)−1

of the Gegenbauer, Legendre and Chebyshev polynomials of the 2nd kind:
C(ν)

n (x), Pn(x) and Un(x). Our objective here will be to discover the
differential equations satisfied by Sebbar polynomials of the third kind Qn,ν(x)14

(1 − 3xh − h3)−ν =
∞∑

n=0

Qn,ν(x)hn

of which the first few are15

Q0,ν(x) = 1
Q1,ν(x) = 3xν

Q2,ν(x) = 9
2x2ν(ν + 1)

Q3,ν(x) = ν + 9
2x3ν(ν + 1)(ν + 2)

Q4,ν(x) = 3xν(ν + 1) + 27
8 x3ν(ν + 1)(ν + 2)(ν + 3)

Q5,ν(x) = 9
2x2ν(ν + 1)(ν + 2) + 81

40x5ν(ν + 1)(ν + 2)(ν + 3)(ν + 5)

Note that we again have degree = order, and that the exponents again advance
by multiples of 3.

Working again from

Zn = aQn
′′′ + bQn

′′ + cnxQn
′ + dnQn

by the established suspended evaluation iterative procedure,16 we arrive finally
at

27(2 + 3ν + ν2)
d3





c8

c9

c10

c11



 =





206
260
320
386



 + ν





27
33
39
45



 + ν2





−9
−9
−9
−9





27(2 + 3ν + ν2)
d3





d8

d9

d10

d11



 =





704
972
1300
1694



 + ν





456
567
690
825



 + ν2





72
81
90
99





14 One would honor an ancient convention by writing Q(ν)
n (x). It is for

typographic convenience that I write Qn,ν(x), and usually will omit explicit
reference to the ν-parameter.

15 Here Pochhammer’s notation (ν)p = ν(ν + 1)(ν + 2) · · · (ν + p − 1) would
be of use.

16 For computational details, see “Polynomial DE Worksheet 3” (November
2017).



Sebbar polynomials of the third kind 15

We rescale by setting
27(2 + 3ν + ν2)

d3
−→ 1

and with the aid of

M =





83 82 8 1
93 92 9 1
103 102 10 1
113 112 11 1





obtain
cn = (3n2 + 3n − 10) + (6n − 21)ν − 9ν2

dn = n2(3 + n) + n(9 + 6n)ν + 9nν2

by virtue of which the (similarly rescaled) suspended valuations of {a, b} become

a = −(1 + 4x3)

b = −18x2(1 + 2
3ν)

A final sign reversal gives

Zn = (1 + 4x3)Qn
′′′ + 18x2(1 + 2

3ν)Qn
′′

− [(3n2 + 3n − 10) + (6n − 21)ν − 9ν2]xQn
′

− [n2(3 + n) + n(9 + 6n)ν + 9nν2]Qn = 0

which agree precisely with the differential equations obtained (somehow!) by
Ahmed Sebbar. Remarkably, we at ν = 0 recover the previously-encountered
equations

Zn = (1 + 4x3)Sn
′′′ + 18x2Sn

′′ − (3n2 + 3n − 10)x Sn
′ − n2(3 + n)Sn = 0

—this even though the “polynomials” Qn,0(x) : n > 0 all vanish identically.

Sebbar polynomials of the fourth kind. From

(1 + 3xh2 − h3)−ν =
∞∑

n=0

Pn,ν(x)hn

one is led to polynomials

P0,ν(x) = 1
P1,ν(x) = 0
P2,ν(x) = −3x(ν)1
P3,ν(x) = ν

P4,ν(x) = 9
2x2(ν)2

P5,ν(x) = −3x(ν)2

P6,ν(x) = 1
2 (ν)2 + 9

2x3(ν)3
P7,ν(x) = 9

2x2(ν)3
P8,ν(x) = 3

2x(ν)3 + 27
8 x4(ν)4

P9,ν(x) = 1
6x2(ν)3 − 9

2x3(ν)4
P10,ν(x) = 9

4x2(ν)4 − 81
40x5(ν)5



16 Extracting differential equations from the generators of polynomials

in which the degree = order property has been lost, as has linear independence;
in those respects they stand to the Q polynomials as the R polynomials stand to
the S polynomials. The P -population is, like the R-population, unattractively
“straggle-toothed,” though there is evidence in the preceding short list of the
onset of x-exponents advancing by multiples of 3. Nevertheless, Sebbar has
observed that—demonstrably—the P polynomials satisfy differential equations
quite similar to those satisfied by the Q polynomials. I am satisfied that the
suspended evaluation iterative process described above would lead to Sebbar’s
P -equations, but for purposes of comparison am content simply to borrow from
his result. We have

for the P equations cn = −(3n2 + 3n − 10) + 21ν − 6nν + 9ν2

for the Q equations cn = −(3n2 − 3n − 10) + 30ν − 12nν

for the P equations dn = −n2(3 + n) − 9nν − 6n2ν − 9nν2

for the Q equations dn = −n2(3 − n) − 9nν + 3n2ν

where again the ν-independent terms exchange places when the sign of n is
reversed, but the ν-depemdemt terms are quite distinct. Remarkably, the
ν-independent terms encountered in the P and Q-equations are identical to
those encountered in the S and R-equations, respectively. Moreover, a
previously remarked property of the P -equations pertains also to the
Q-equations:

P -equations −→ S -equations
Q-equations −→ R-equations

}
in the formal limit ν −→ 0

So far as concerns the relationship Sebbar’s generating functions, which
are of the forms (expression)−ν and log(expression), we note that

−ν

∫
1

z1+ν
dz = z−ν

lim
ν→0

{
− ν

∫
1

z1+ν
dz

}
= 1

lim
ν→0

{
−

∫
1

z1+ν
dz

}
= ∞

∫
1

z1+0
dz = log(z)

provide a hint of what may be the root of their formal kinship.


