Extracting Differential Equations

from the

Generators of Polynomials

Nicholas Wheeler

November 2017

Introduction. The construction

$$
\log \left(1-3 x h-h^{3}\right)=\sum_{n=0}^{\infty} S_{n}(x) h^{n}
$$

produces a population of polynomials

$$
\begin{aligned}
& S_{0}(x)=0 \\
& S_{1}(x)=-3 x \\
& S_{2}(x)=-\frac{9}{2} x^{2} \\
& S_{3}(x)=-1-9 x^{3} \\
& S_{4}(x)=-3 x-\frac{81}{4} x^{4} \\
& S_{5}(x)=-9 x^{2}-\frac{243}{5} x^{5} \\
& S_{6}(x)=-\frac{1}{2}-27 x^{3}-\frac{243}{2} x^{6} \\
& S_{7}(x)=-3 x-81 x^{4}-\frac{2187}{7} x^{7} \\
& S_{8}(x)=-\frac{27}{2} x^{2}-243 x^{5}-\frac{6561}{8} x^{8} \\
& S_{9}(x)=-\frac{1}{3}-54 x^{3}-729 x^{6}-2187 x^{9}
\end{aligned}
$$

which are among a quartet of polynomial systems of special interest to Ahmed Sebbar. ${ }^{1}$ Sebbar has remarked-without argument, but as is (with the assistance of Mathematica) easily confirmed, and as Ray Mayer has by an ingenious argument quite recently deduced-that the $S_{n}(x)$ are solutions of

[^0]the $3^{\text {rd }}$ order linear differential equation
$$
\left(4 x^{3}+1\right) f^{\prime \prime \prime}+18 x^{2} f^{\prime \prime}-\left(3 n^{2}+3 n-10\right) x f^{\prime}-n^{2}(n+3) f=0
$$

Mayer's argument, however, draws critically upon features special to the problem at hand, specifically that the generating function (i) is the logarithm of (ii) a cubic, that can be factored: $1-3 x h-h^{3}=(\alpha-h)(\beta-h)(\gamma-h)$ which by $\alpha(x) \beta(x) \gamma(x)=1$ permits one to write

$$
\begin{aligned}
\log \left(1-3 x h-h^{3}\right) & =\log (1-h / \alpha)+\log (1-h / \beta)+\log (1-h / \gamma) \\
& =\sum_{n=1}^{\infty}-\frac{1}{n}\left(\frac{1}{\alpha^{n}}+\frac{1}{\beta^{n}}+\frac{1}{\gamma^{n}}\right) h^{n}
\end{aligned}
$$

with the remarkable implication that

$$
S_{n}(x)=-\frac{1}{n}\left(\frac{1}{\alpha^{n}}+\frac{1}{\beta^{n}}+\frac{1}{\gamma^{n}}\right)
$$

Mayer's argument leads, moreover, to expressions that are much too enormous ${ }^{2}$ to be managed without computer assistance (though the final simplifications, which also require computer assisstance, are dramatic).

Chapter 22 of Abramowitz \& Stegun's Handbook of Mathematical Functions (1964) provides generating functions (§22.9) and differential equations (§22.6) for all the classic orthogonal polynomials. Those generating functions (with the exception only of $\log \left(1-2 x h+h^{2}\right)$, which generates Chebyshev polynomials of the $1^{\text {st }}$ kind) possess none of the special features of which Mayer made use, and the associated differential equations are classical, originally obtained by hand, in days before computer assistance was a possibility.

I have yet to discover in the literature an account of how people "standardly" proceed

$$
\text { generating function } \longrightarrow \text { associated differential equations }
$$

My objective here is to describe my own home-grown procedure. We will look first to some representative orthogonal polynomials, then to the more general (non-orthogonal?) of interest to Sebbar. My method employs Mathematica as an initially inessential convenience, and I will be quoting details taken from a companion notebook. ${ }^{3}$

I work from the elementary observation that if $G_{0}(x, h)$ generates polynomials $P_{n}(x)$
then

$$
G_{0}(x, h)=\sum_{n=0}^{\infty} P_{n}(x) h^{n}
$$

$$
G_{k}(x, h)=\left(\frac{d}{d x}\right)^{k} G_{0}(x, h) \quad: \quad k=1,2,3, \ldots
$$

generates the $k^{t h}$ derivatives of those polynomials. My method gains essential

[^1]leverage from the observation (Abramowitz \& Stegun, §22.6) that the differential equations satisfied by orthogonal polynomials are in every instance of $2^{\text {nd }}$ order and linear, ${ }^{4}$ on which basis we expect to have
$$
a G_{2}(x, h)+b G_{1}(x, h)+c G_{0}(x, h)=0
$$

We notice also that in every case $(i) a$ and b are n-independent functions of x, and $(i i) c$ is an x-independent function of n. I promote (i) to the status of a working hypothesis (one of which Mayer had no need).

Methodological laboratory: the Legendre polynomials. The function

$$
G_{0}(x, h)=\frac{1}{\sqrt{1-2 x h+h^{2}}}
$$

generates the Legendre polynomials

$$
\begin{aligned}
& P_{0}(x)=1 \\
& P_{1}(x)=x \\
& P_{2}(x)=\frac{1}{2}\left(-1+3 x^{2}\right) \\
& P_{3}(x)=\frac{1}{2}\left(-3 x+5 x^{3}\right) \\
& P_{4}(x)=\frac{1}{8}\left(3-30 x^{2}+35 x^{4}\right) \\
& P_{5}(x)=\frac{1}{8}\left(15 x-70 x^{3}+63 x^{5}\right) \\
& P_{6}(x)=\frac{1}{16}\left(-5+10 x^{2}-315 x^{4}\right) \\
& P_{7}(x)=\frac{1}{16}\left(-35 x+315 x^{3}-693 x^{5}+429 x^{7}\right)
\end{aligned}
$$

Writing

$$
a G_{2}(x, h)+b G_{1}(x, h)+c G_{0}(x, h)=\sum_{n=0}^{\infty} Z_{n}\left(x ; a, b, c_{n}\right) h^{n}
$$

with

$$
G_{1}(x, h)=\frac{h}{\left(1-2 x h+h^{2}\right)^{\frac{3}{2}}}, \quad G_{2}(x, h)=\frac{3 h^{2}}{\left(1-2 x h+h^{2}\right)^{\frac{3}{2}}}
$$

we with computational assistance obtain

$$
\begin{aligned}
& Z_{0}=c_{0} \\
& Z_{1}=b+c_{1} x \\
& Z_{2}=\frac{1}{2}\left(6 a-c_{2}+6 b x+3 c_{2} x^{2}\right) \\
& Z_{3}=\frac{1}{2}\left(-3 b+30 a x-3 c_{3} x+15 b x^{2}+5 c_{3} x^{3}\right) \\
& \left.Z_{4}=\frac{1}{8}\left(-60 a+3 c_{4}-60 b x+420 a x^{2}-30 c_{4} x^{2}\right)+140 b x^{3}+35 c_{4} x^{4}\right) \\
& Z_{5}=\frac{1}{8}\left(15 b-420 a x+15 c_{5} x-210 b x^{2}+1260 a x^{3}-70 c_{5} x^{3}+315 b x^{4}+63 c_{5} x^{5}\right)
\end{aligned}
$$

$$
\vdots
$$

${ }^{4}$ The literature must provide an account of why this is necessarily so.
and proceed to solve serially the equations $Z_{n}=0$. From $Z_{0}=0$ and $Z_{1}=0$ we have

$$
c_{0}=0 \quad \text { and } \quad b=-c_{1} x
$$

Substitute the latter into Z_{2} and obtain $Z_{2}=\frac{1}{6}\left(6 a-c_{1} x^{2}-c_{2}+3 c_{2} x^{2}\right)=0$, giving

$$
a=\frac{1}{6}\left(6 c_{1} x^{2}+c_{2}-3 c_{2} x^{2}\right)
$$

Substitute those values of a and b into Z_{3} and obtain

$$
Z_{3}=\frac{1}{2}\left(3 c_{1}+5 c_{2}-3 c_{3}\right) x+\frac{5}{2}\left(3 c_{1}-3 c_{2}+c_{3}\right) x^{2}
$$

Set the coefficients of x and x^{2} both equal to 0 , solve for $\left\{c_{2}, c_{3}\right\}$ and get

$$
c_{2}=3 c_{1}, \quad c_{3}=6 c_{1}
$$

Return with the former to the preceding description of a and get ${ }^{5}$

$$
\begin{aligned}
a & =\frac{1}{2}\left(1-x^{2}\right) c_{1} \\
b & =-x c_{1}
\end{aligned}
$$

Introduce those expressions into Z_{4} and get

$$
Z_{4}=\left(-\frac{15}{4} c_{1}+\frac{3}{8} c_{4}\right)+\left(\frac{75}{2} c_{1}-\frac{15}{4} c_{4}\right) x^{2}+\left(-\frac{175}{4} c_{1}+\frac{35}{8} c_{4}\right) x^{4}
$$

in which the requirement that all coefficients vanish gives

$$
c_{4}=10 c_{1}
$$

Z_{5} leads similarly to

$$
c_{5}=15 c_{1}
$$

So we have

$$
\frac{1}{2} c_{1}\left\{\left(1-x^{2}\right) P_{n}^{\prime \prime}-2 x P_{n}^{\prime}+c_{n} P_{n}=0\right\} \quad \text { with } \quad\left\{\begin{array}{l}
c_{0}=0 \\
c_{1}=2 \\
c_{2}=6 \\
c_{3}=12 \\
c_{4}=20 \\
c_{5}=30
\end{array}\right.
$$

If we accept the conjecture ${ }^{6}$ that $c_{n}=n(n+1)$ then

$$
\left(1-x^{2}\right) P_{n}^{\prime \prime}-2 x P_{n}^{\prime}+n(n+1) P_{n}=0
$$

which is precisely the familiar Legendre differential equation, of which the

[^2]general solution can be written $\alpha P_{n}(x)+\beta Q_{n}(x)$. Here the $Q_{n}(x)$ are (nonpolynomial) "Legendre functions of the $2^{\text {nd }}$ kind," the first few of which are
\[

$$
\begin{aligned}
& Q_{0}(x)=P_{0}(x) \operatorname{arctanh}(x) \\
& Q_{1}(x)=P_{1}(x) \operatorname{arctanh}(x)-1 \\
& Q_{2}(x)=P_{2}(x) \operatorname{arctanh}(x)-\frac{3}{2} x \\
& Q_{3}(x)=P_{3}(x) \operatorname{arctanh}(x)-\left(\frac{15}{6} x^{2}-\frac{2}{3}\right)
\end{aligned}
$$
\]

Discussion of the bivariate Legendre functions $P_{\nu}(x), Q_{\nu}(x)$ and trivariate Legendre functions $P_{\nu}^{(\mu)}(x), Q_{\nu}^{(\mu)}(x)$ can be found in Chapter 59 of Spanier \& Oldham's Atlas of Functions (1987).

Chebyshev polynomials of the first kind. The function

$$
G_{0}(x, h)=\frac{1-x h}{1-2 x h+h^{2}}=\sum_{n=0}^{\infty} T_{n}(x) h^{n}
$$

generates Chebyshev polynomials of the $1^{\text {st }}$ kind:

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x \\
& T_{2}(x)=-1+2 x^{2} \\
& T_{3}(x)=-3 x+4 x^{3} \\
& T_{4}(x)=1-8 x^{2}+8 x^{4} \\
& T_{5}(x)=5 x-20 x^{3}+16 x^{5} \\
& T_{6}(x)=-1+18 x^{2}-48 x^{4}+32 x^{6}
\end{aligned}
$$

Proceeding as before, we write

$$
a G_{2}(x, h)+b G_{1}(x, h)+c G_{0}(x, h)=\sum_{n=0}^{\infty} Z_{n}\left(x ; a, b, c_{n}\right) h^{n}
$$

and by assisted computation obtain

$$
\begin{aligned}
& Z_{0}=c_{0} \\
& Z_{1}=b+c_{1} x \\
& Z_{2}=4 a-c_{2}+4 b x+2 c_{2} x^{2} \\
& Z_{3}=-3 b+24 a x-3 c_{3} x+12 b x^{2}+4 c_{3} x^{3} \\
& Z_{4}=-16 a+c_{4}-16 b x+96 a x^{2}-8 c_{4} x^{2}+32 b x^{3}+8 c_{4} x^{4} \\
& Z_{5}=5 b-120 a x+5 c_{5} x-60 b x^{2}+320 a x^{3}-20 c_{5} c^{3}+80 b x^{4}+16 c_{4} x^{5}
\end{aligned}
$$

Proceeding again serially to the solution of the equations $Z_{n}=0$, we find

$$
\begin{gathered}
c_{0}=0 \quad \text { and } \quad b=-c_{1} x \\
\therefore Z_{2}=4 a-4 c_{1} x^{2}-c_{2}+2 c_{2} x^{2} \Rightarrow a=\frac{1}{4}\left(4 c_{1} x^{2}+c_{2}-2 c_{2} x^{2}\right) \\
\therefore Z_{3}=\left(3 c_{1}+6 c_{2}-3 c_{3}\right) x+\left(12 c_{1}-12 c_{2}+4 c_{3}\right) x^{3} \Rightarrow\left\{\begin{array}{l}
c_{2}=4 c_{1} \\
c_{3}=9 c_{1}
\end{array}\right. \\
\therefore a=\left(1-x^{2}\right) c_{1} \quad: \quad \text { Note again the suspended evaluation of } a . \\
\therefore Z_{4}=\left(c_{4}-16 c_{1}\right)-\left(8 c_{4}-128 c_{1}\right) x^{2}+\left(8 c_{4}-128 c_{1}\right) x^{4} \Rightarrow c_{4}=16 c_{1} \\
\therefore Z_{5}=\left(5 c_{5}-125 c_{1}\right) x-\left(20 c_{5}+500 c_{1}\right) x^{3}+\left(16 c_{5}-400 c_{1}\right) x^{5} \Rightarrow c_{5}=25 c_{1}
\end{gathered}
$$

These results make plausible the conjecture that $c_{n}=n^{2} c_{1}$. Exercising our option to set $c_{1}=1$, we find that the Chebyshev polynomials $T_{n}(x)$ satisfy "Chebyshev's differential equation"

$$
\left(1-x^{2}\right) T_{n}^{\prime \prime}-x T_{n}^{\prime}+n^{2} T_{n}=0
$$

of which the general solution ${ }^{7}$ is of the form

$$
\begin{aligned}
\alpha T_{n}(x)+\beta \sqrt{1-x^{2}} U_{n-1}(x) & : \quad n=1,2,3, \ldots \\
\alpha+\beta \arcsin (x) & : \quad n=0
\end{aligned}
$$

where the $U_{n}(x)$ are Chebyshev polynomials of the $2^{\text {nd }}$ kind, generated by $\left(1-2 x h+h^{2}\right)^{-1}=\sum_{n=0}^{\infty} U_{n}(x) h^{n}$. Reminiscent of a result mentioned on page 2 is the fact ${ }^{7}$ that one can describe the polynomials $T_{n}(x)$ by expressions

$$
T_{n}(x)=\frac{1}{2}\left(\alpha^{n}+\beta^{n}\right):\left\{\begin{array}{l}
\alpha(x)=x+\sqrt{x^{2}-1} \\
\beta(x)=x-\sqrt{x^{2}-1}
\end{array}\right.
$$

that on their face do not look much like polynomials. This result is made somewhat less mysterious by the observations ${ }^{8}$ that the polynomials $\mathcal{T}_{n}(x)$ defined

$$
\log \left(1-2 x h+h^{2}\right)=\sum_{n=0}^{\infty} \mathcal{T}_{n}(x) h^{n}
$$

are in fact also solutions of Chebyshev's equation, and that

$$
1-2 x h+h^{2}=(\alpha-h)(\beta-h)=\left(1-\frac{h}{\alpha}\right)\left(1-\frac{h}{\beta}\right) \text { by } \alpha \beta=1
$$

entails

$$
\begin{aligned}
\sum_{n=0}^{\infty} \mathcal{T}_{n}(x) h^{n} & =\log \left(1-\frac{h}{\alpha}\right)+\log \left(1-\frac{h}{\beta}\right) \\
& =\sum_{n=0}^{\infty}-\frac{1}{n}\left(\frac{1}{\alpha^{n}}+\frac{1}{\beta^{n}}\right) h^{n}
\end{aligned}
$$

[^3]We expect $\mathcal{T}_{n}(x)$ to be a linear combination of $T_{n}(x)$ and $\sqrt{1-x^{2}} U_{n-1}(x)$, and some Mathematica-assisted experimentation indicates that in fact

$$
\mathcal{T}_{n}(x)=-\frac{2}{n} T_{n}(x)
$$

This amounts to the statement that

$$
\frac{1}{\alpha^{n}}+\frac{1}{\beta^{n}}=\alpha^{n}+\beta^{n}
$$

which follows immediately from the circumstance that $\alpha \beta=1$.
Hermite polynomials. The Hermite polynomials $H_{n}(x)$ are generated

$$
\begin{aligned}
& e^{2 x h-h^{2}}=\sum_{n=0}^{\infty} \frac{1}{n!} H_{n}(x) h^{n} \\
H_{0}(x) & =1 \\
H_{1}(x) & =2 x \\
H_{2}(x) & =-2+4 x^{2} \\
H_{3}(x) & =-12 x+8 x^{3} \\
H_{4}(x) & =12-48 x^{2}+16 x^{4} \\
H_{5}(x) & =120 x-160 x^{3}+32 x^{5} \\
H_{6}(x) & =-120+720 x^{2}-480 x^{4}+64 x^{6} \\
& \vdots
\end{aligned}
$$

The presence of the factorial requires that we modify our procedure slightly; instead of working from the generaating function we work directly from the polynomials, writing

$$
Z_{n}=a H_{n}^{\prime \prime}+b H_{n}^{\prime}+c_{n} H_{n}
$$

This gives

$$
\begin{aligned}
& Z_{0}=c_{0} \\
& Z_{1}=2 b+2 c_{1} x \\
& Z_{2}=8 a+8 b x+c_{2}\left(-2+4 x^{2}\right) \\
& Z_{3}=48 a x+b\left(-12+24 x^{2}\right)+c_{3}\left(-12 x+8 x^{3}\right) \\
& Z_{4}=a\left(-96+192 x^{2}\right)+b\left(-96 x+64 x^{3}\right)+c_{4}\left(12-48 x^{2}+16 x^{4}\right)
\end{aligned}
$$

From $Z_{n}=0$ we obtain

$$
\begin{gathered}
c_{0}=0 \quad \text { and } b=-c_{1} x \\
\therefore Z_{2}=\left(8 a-2 c_{2}\right)+\left(-8 c_{1}+4 c_{2}\right) x^{2} \Rightarrow\left\{\begin{array}{c}
c_{2}=2 c_{1} \\
a=\frac{1}{4} c_{2}=\frac{1}{2} c_{1}
\end{array}\right. \\
\therefore Z_{3}=\left(36 c_{1}-12 c_{3}\right) x+\left(-24 c_{1}+8 c_{3}\right) x^{2} \Rightarrow c_{3}=3 c_{1} \\
\therefore Z_{4}=\left(-48 c_{1}+12 c_{4}\right)+\left(192 c_{1}-48 c_{4}\right) x^{2}+\left(-64 c_{1}+16 c_{4}\right) x^{4} \Rightarrow c_{4}=4 c_{1} \\
\therefore Z_{5}=\left(-600 c_{1}+120 c_{5}\right) x+\left(800 c_{1}-160 c_{5}\right) x^{3}+\left(-160 c_{1}+32 c_{5}\right) x^{5} \Rightarrow c_{5}=5 c_{1}
\end{gathered}
$$

We are led thus to Hermite's differential equation

$$
H_{n}^{\prime \prime}-2 x H_{n}^{\prime}+2 n H_{n}=0
$$

of which the general solution is

$$
\alpha H_{n}(x)+\beta \text { Hypergeometric1F1 }\left(-\frac{n}{2}, \frac{1}{2}, x^{2}\right)
$$

Sebbar polynomials of the first kind. The method illustrated above could be used to discover-by hand, with pen and paper-the differential equations satisfied by all of the classic orthogonal polynomials. We look now to the polynomials $S_{n}(x)$ described on page 1. It will emerge that-though the work could, in principle, still be done by hand-computer-assisted management of the details is almost indispensable.

Since no $\frac{1}{n!}$-factor enters into their construction, we could work either from their generator $G_{0}(x, h)=\log \left(1-3 x h-h^{3}\right)$ or directly from the polynomials themselves. I adopt here and henceforth the latter option because it was in those terms that I first approached the problem of reproducing Sebbar's DEs, and was led to the conclusion that the problem is intractable $=$ a problem worthy of the genius of Ray Mayer.

> FIRST APPROACH: FAILURE

We attempt to employ unchanged the method that worked when we were discussing orthogonal polynomials, which is to say: we work from

$$
Z_{n}=a S_{n}^{\prime \prime}+b S_{n}^{\prime}+c_{n} S_{n}
$$

which gives

$$
\begin{aligned}
& Z_{0}=0 \\
& Z_{1}=-3 b-3 x c_{1} \\
& Z_{2}=-9 a-9 b x-\frac{9}{2} x^{2} c_{2} \\
& Z_{3}=-54 a x-27 b x^{2}-\left(1+9 x^{3}\right) c_{3} \\
& Z_{4}=-243 a x^{2}-\frac{3}{4} b\left(4+108 x^{3}\right)-\frac{3}{4}\left(4 x+27 x^{4}\right) c_{4} 5
\end{aligned}
$$

Solving $Z_{1}=Z_{2}=0$ for $\{a, b\}$ we find

$$
\begin{aligned}
a & =\frac{1}{2} x^{2}\left(2 c_{1}-c_{2}\right) \\
b & =-x c_{1}
\end{aligned}
$$

Which when fed into $Z_{3}=0$ gives

$$
\begin{aligned}
& c_{2}=c_{1} \\
& c_{3}=0
\end{aligned}
$$

Z_{4}, having digested all those results, reads $Z_{4}=3\left(c_{1}-c_{4}\right) x-\frac{81}{4}\left(2 c_{1}+c_{4}\right) x^{4}$. From $Z_{4}=0$ we are led thus to a contradiction

$$
\begin{aligned}
& c_{4}=c_{1} \\
& c_{4}=-2 c_{1}
\end{aligned}
$$

from which $c_{1}=0$ provides the only escape. But then $\left\{a=b=c_{n}=0\right\}$; the theory has collapsed into vacuous triviality.
SECOND APPROACH: FAILURE

To expand the playing field, give us more parameters to play with, we assume that the S_{n} satisfy differential equations of $3^{\text {rd }}$ order:

$$
Z_{n}=a S_{n}^{\prime \prime \prime}+b S_{n}^{\prime \prime}+c_{n} S_{n}^{\prime}+d_{n} S_{n}
$$

We retain-for no better reason that it worked before - the assumption that $\{a, b\}$ are n-indepedent. Then

$$
\begin{aligned}
& Z_{0}=0 \\
& Z_{1}=-3 c_{1}-3 x d_{1} \\
& Z_{2}=-9 b-9 x c_{2}-\frac{9}{2} x^{2} d_{2} \\
& Z_{3}=-54 a-54 b x-27 x^{2} c_{3}-\left(1+9 x^{3}\right) d_{3} \\
& Z_{4}=-486 a x-243 b x^{2}-\left(3+81 x^{3}\right) c_{4}-\left(3 x+\frac{81}{4} x^{4}\right) d_{4} \\
& Z_{5}=-2916 a x^{2}-b\left(18+972 x^{3}\right)-\left(18 x+243 x^{4}\right) c_{5}-\left(9 x^{2}+\frac{243}{5} x^{5}\right) d_{5}
\end{aligned}
$$

Proceeding as before, ${ }^{9}$ we are led from $Z_{5}=0$ to another contradiction

$$
\begin{aligned}
d_{5} & =37 d_{2} \\
d_{5} & =40 d_{2}
\end{aligned}
$$

with familiar catastrophic consequences. The seeds of this development are seen to have been sown at $Z_{1}=0$, which entailed $c_{1}=d_{1}=0$.
THIRD APPROACH: SUCCESS

We work now from

$$
Z_{n}=a S_{n}^{\prime \prime \prime}+b S_{n}^{\prime \prime}+c_{n} x S_{n}^{\prime}+d_{n} S_{n}
$$

where the x has been introduced into the coefficient of S_{n}^{\prime} to avoid the fatal result just mentioned. We then find

$$
\begin{aligned}
& Z_{0}=0 \\
& Z_{1}=-3 x\left(c_{1}+d_{1}\right) \\
& Z_{2}=-9 b-9 x^{2}\left(c_{2}+\frac{1}{2} d_{2}\right) \\
& Z_{3}=-54 a-54 b x-27 x^{3} c_{3}-\left(1+9 x^{3}\right) d_{3}
\end{aligned}
$$

From $Z_{1}=0$ we now have

$$
c_{1}=-d_{1}
$$

$Z_{2}=0$ gives

$$
b=-x^{2}\left(c_{2}+\frac{1}{2} d_{2}\right)
$$

${ }^{9}$ The details are spelled out in "Polynomial DE Worksheet $1 .{ }^{3}{ }^{3}$
and when those results are fed into Z_{3} and the result solved for a we have

$$
a=-\frac{1}{54} d_{3}+\frac{1}{54} x^{3}\left(54 c_{2}-27 c_{3}+27 d_{2}-9 d_{3}\right)
$$

Feeding the results now in hand into $Z_{n}: n=4,5,6, \ldots$ (the Z_{n} that "lie upstream" from Z_{3}), we find that

$$
\begin{aligned}
Z_{4} & =x X_{4,1}+x^{4} X_{4,4} \\
Z_{5} & =x^{2} X_{5,2}+x^{5} X_{5,5} \\
Z_{6} & =X_{6,0}+x^{3} X_{6,3}+x^{6} X_{6,6} \\
Z_{7} & =x X_{7,1}+x^{4} X_{7,4}+x^{7} X_{7,7} \\
Z_{8} & =x^{2} X_{8,2}+x^{5} X_{8,50}+x^{8} X_{8,8} \\
Z_{9} & =X_{9,0}+x^{3} X_{9,3}+x^{6} X_{9,6}+x^{9} X_{9,9} \\
Z_{10} & =x X_{10,1}+x^{4} X_{10,4}+x^{7} X_{10,7}+x^{10} X_{10,10} \\
Z_{11} & =x^{2} X_{11,2}+x^{5} X_{11,5}+x^{8} X_{11,8}+x^{11} X_{11,11} \\
Z_{12} & =X_{12,0}+x^{3} X_{12,3}+x^{6} X_{12,6}+x^{9} X_{12,9}+x^{12} X_{12,12}
\end{aligned}
$$

Here $X_{i, j}$ is linear combination of $\left\{c_{i}, d_{i}\right\}$ and of those parameters $\left\{c_{2}, c_{3}, d_{2}, d_{3}\right\}$ whose suspended evaluation has not yet been accomplished. ${ }^{10}$ Note that Z_{n} $(n>3)$ is a polynomial of degree n in which all powers differ by 3 , and in this respect mimics a conspicuous property of $S_{n} .{ }^{11}$
$Z_{4}=0$ is seen to provide two conditions, which we solve for $\left\{c_{4}, d_{4}\right\}$ and feed upstream. The resulting Z_{5} provides two conditions which we solve for $\left\{c_{5}, d_{5}\right\}$ and again feed upstream. The resulting Z_{6} provides three conditions, from which we obtain evaluations of $\left\{c_{6}, d_{6}\right\}$ and a suspended evaluation of (say) c_{2}, which therefore disappears from all upstream X-factors. Continuing with this "iterative exercise in suspended evaluation," we arrive finally at results that can be expressed

$$
\left(\begin{array}{c}
c_{6} \\
c_{7} \\
c_{8} \\
c_{9} \\
c_{10}
\end{array}\right)=\frac{1}{27} d_{3}\left(\begin{array}{c}
58 \\
79 \\
103 \\
130 \\
160
\end{array}\right), \quad\left(\begin{array}{c}
d_{6} \\
d_{7} \\
d_{8} \\
d_{9} \\
d_{10}
\end{array}\right)=\frac{1}{27} d_{3}\left(\begin{array}{c}
162 \\
245 \\
352 \\
486 \\
650
\end{array}\right)
$$

and which invite this rescaling:

$$
\frac{1}{27} d_{3} \longrightarrow 1
$$

[^4]We now pursue the conjecture that c_{n} (similarly d_{n}, both rescaled) can be developed as a cubic in n :

$$
c_{n}=p n^{3}+q n^{2}+r n+s
$$

To discover suitable values of $\{p, q, r, s\}$ ($=$ test the conjecture) we construct

$$
\mathbb{M}=\left(\begin{array}{llll}
6^{3} & 6^{2} & 6 & 1 \\
7^{3} & 7^{2} & 7 & 1 \\
8^{3} & 8^{2} & 8 & 1 \\
9^{3} & 9^{2} & 9 & 1
\end{array}\right)
$$

and observe that

$$
\mathbb{M}\left(\begin{array}{l}
p \\
q \\
r \\
s
\end{array}\right)=\left(\begin{array}{c}
58 \\
79 \\
103 \\
130
\end{array}\right) \quad \Longrightarrow \quad\left(\begin{array}{l}
p \\
q \\
r \\
s
\end{array}\right)=\left(\begin{array}{c}
0 \\
3 / 2 \\
3 / 2 \\
-5
\end{array}\right)
$$

from which (and by a similar argument) we obtain

$$
\begin{aligned}
& c_{n}=\frac{3}{2} n^{2}+\frac{3}{2} n-5 \\
& d_{n}=\frac{1}{2} n^{3}+\frac{3}{2} n^{2}
\end{aligned}
$$

Returning with this information to previous descriptions of $\{a, b\}$ we obtain these (similarly rescaled) suspended evaluations:

$$
\begin{aligned}
a & =-\frac{1}{2}\left(1+4 x^{3}\right) \\
b & =-9 x^{2}
\end{aligned}
$$

A final rescaling (multiply all terms by -2) provides

$$
Z_{n}=\left(1+4 x^{3}\right) S_{n}^{\prime \prime \prime}+18 x^{2} S_{n}^{\prime \prime}-\left(3 n^{2}+3 n-10\right) x S_{n}^{\prime}-n^{2}(n+3) S_{n}=0
$$

which (see again page 2) is precisely the result we sought to establish-the equation asserted by Sebbar, and established by Mayer by quite other means.

Sebbar polynomials of the second kind. We look now to the polynomials $R_{n}(x)$ defined by

$$
\log \left(1+3 x h^{2}-h^{3}\right)=\sum_{n=0}^{\infty} R_{n}(x) h^{n}
$$

These, when spelled out, ${ }^{12}$ are seen to lack some of the properties we usually associate with generated sets of polynomials: they are transparently not linearly independent, and the degree of R_{n}, instead of being equal to n, has become an irregular function of n that never exceets $\frac{1}{2} n$. But they will be found to satisfy

[^5]\[

$$
\begin{aligned}
R_{0}(x) & =0 \\
R_{1}(x) & =0 \\
R_{2}(x) & =3 x \\
R_{4}(x) & =-\frac{9}{2} x^{2} \\
R_{5}(x) & =3 x \\
R_{6}(x) & =\frac{1}{6}\left(-3+54 x^{3}\right) \\
R_{7}(x) & =-9 x^{2} \\
R_{8}(x) & =-\frac{3}{4}\left(-4 x+27 x^{4}\right) \\
R_{9}(x) & =\frac{1}{3}\left(-1+81 x^{3}\right) \\
R_{10}(x) & =\frac{27}{10}\left(-5 x^{2}+18 x^{5}\right)
\end{aligned}
$$
\]

differential equations that differ only slightly from those satisfied by the Sebbar polynomials $S_{n}(x)$. The argument is a straightforward variant of the argument rehearsed in the preceeding section, but-because degree ascents so slowly within $\left\{R_{n}(x)\right\}$, which is so "straggle-toothed"-must be carried to much higher order to produce useful results.

We work again from

$$
Z_{n}=a R_{n}^{\prime \prime \prime}+b R_{n}^{\prime \prime}+c_{n} x R_{n}^{\prime}+d_{n} R_{n}
$$

where by assisted calculation

$$
\begin{aligned}
& Z_{0}=0 \\
& Z_{1}=0 \\
& Z_{2}=3 x\left(c_{2}+d_{2}\right) \\
& Z_{3}=-d_{3} \\
& Z_{4}=-9 b-9 x^{2}\left(c_{4}+\frac{1}{2} d_{4}\right) \\
& Z_{5}=3 x\left(c_{5}+d_{5}\right) \\
& Z_{6}=54 a+54 b x+27 x^{3} c_{6}+\frac{1}{6}\left(-3+54 x^{3}\right) d_{6}
\end{aligned}
$$

From $Z_{0}=Z_{1}=\cdots=Z_{6}=0$ we obtain temporary valuations of $c_{2}, d_{3}, b, c_{5}, a$ which when fed into Z_{7} produce $Z_{7}=x^{2}\left(18 c_{4}-18 c_{7}+9 d_{4}-9 d_{7}\right)$ whence $c_{7}=\frac{1}{2}\left(2 c_{4}+d_{4}-d_{7}\right)$. From this point the iterative process proceeds straightforwardly, though the irregular slow growth of degree \leqslant order n requires that one proceed all the way to Z_{14} before one has acquired the suspended evaluations that permit one to write

$$
\left(\begin{array}{l}
c_{14} \\
c_{15} \\
c_{16} \\
c_{17}
\end{array}\right)=\frac{1}{54} d_{6}\left(\begin{array}{l}
-268 \\
-310 \\
-355 \\
-403
\end{array}\right), \quad\left(\begin{array}{c}
d_{14} \\
d_{15} \\
d_{16} \\
d_{17}
\end{array}\right)=\frac{1}{54} d_{6}\left(\begin{array}{c}
1078 \\
1350 \\
1664 \\
2023
\end{array}\right)
$$

Proceeding as before, we construct

$$
\mathbb{M}=\left(\begin{array}{llll}
14^{3} & 14^{2} & 14 & 1 \\
15^{3} & 15^{2} & 15 & 1 \\
16^{3} & 16^{2} & 16 & 1 \\
17^{3} & 17^{2} & 17 & 1
\end{array}\right)
$$

and find that

$$
\begin{aligned}
\mathbb{M}\left(\begin{array}{l}
p \\
q \\
r \\
s
\end{array}\right)=\left(\begin{array}{l}
-268 \\
-310 \\
-355 \\
-403
\end{array}\right) & \Longrightarrow\left(\begin{array}{l}
p \\
q \\
r \\
s
\end{array}\right)=\left(\begin{array}{c}
0 \\
-3 / 2 \\
+3 / 2 \\
5
\end{array}\right) \\
\mathbb{M}\left(\begin{array}{l}
p \\
q \\
r \\
s
\end{array}\right)=\left(\begin{array}{l}
1078 \\
1350 \\
1664 \\
2023
\end{array}\right) & \Longrightarrow\left(\begin{array}{c}
p \\
q \\
r \\
s
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
-3 / 2 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

We conclude that the $\{c, d\}$ parameters-rescaled by

$$
\frac{1}{54} d_{6} \longrightarrow 1
$$

-can be described

$$
\begin{aligned}
& c_{n}=-\frac{3}{2} n^{2}+\frac{3}{2} n+5 \\
& d_{n}=\frac{1}{2} n^{3}-\frac{3}{2} n^{2}
\end{aligned}
$$

in consequence of which the similarly rescaled parameters $\{a, b\}$ acquire the suspended valuations

$$
\begin{aligned}
a & =\frac{1}{2}\left(1+4 x^{3}\right) \\
b & =9 x^{2}
\end{aligned}
$$

A final rescaling (multiply all terms by +2) provides

$$
\begin{aligned}
& Z_{n}=\left(1+4 x^{3}\right) R_{n}^{\prime \prime \prime}+18 x^{2} R_{n}^{\prime \prime}-\left(3 n^{2}-3 n-10\right) x R_{n}^{\prime}-n^{2}(3-n) R_{n}=0 \\
& Z_{n}=\left(1+4 x^{3}\right) S_{n}^{\prime \prime \prime}+18 x^{2} S_{n}^{\prime \prime}-\left(3 n^{2}+3 n-10\right) x S_{n}^{\prime}-n^{2}(3+n) S_{n}=0
\end{aligned}
$$

Here I have repeated the corresponding S_{n} equation (page 11) to make evident the similarity -remarkable in view of the fact that the polynomials themselves are so dissimilar - of those differential equations; each goes over to the other by simply reversing the sign of n.

Sebbar polynomials of the third kind. Comparison of the generators

$$
\log \left(1-3 x h-h^{3}\right) \quad \text { and } \quad \log \left(1+3 x h^{2}-h^{3}\right)
$$

of the Sebbar polynomials of the first and second kinds with the generator ${ }^{13}$

$$
\log \left(1-2 x h+h^{2}\right)
$$

of the Chebyshev polynomials $\mathcal{T}_{n}(x)$ establishes a sense in which "the Sebbar polynomials are Chebyshev-like." The Sebbar polynomials of the third and

[^6]fourth kinds
$$
\left(1-3 x h-h^{3}\right)^{-\nu} \quad \text { and } \quad\left(1+3 x h^{2}-h^{3}\right)^{-\nu}
$$
are in that same sense reminiscent of the generators
$$
\left(1-2 x h+h^{2}\right)^{-\nu}, \quad\left(1-2 x h+h^{2}\right)^{-\frac{1}{2}} \quad \text { and } \quad\left(1-2 x h+h^{2}\right)^{-1}
$$
of the Gegenbauer, Legendre and Chebyshev polynomials of the $2^{\text {nd }}$ kind: $C_{n}^{(\nu)}(x), P_{n}(x)$ and $U_{n}(x)$. Our objective here will be to discover the differential equations satisfied by Sebbar polynomials of the third kind $Q_{n, \nu}(x)^{14}$
$$
\left(1-3 x h-h^{3}\right)^{-\nu}=\sum_{n=0}^{\infty} Q_{n, \nu}(x) h^{n}
$$
of which the first few are ${ }^{15}$
\[

$$
\begin{aligned}
& Q_{0, \nu}(x)=1 \\
& Q_{1, \nu}(x)=3 x \nu \\
& Q_{2, \nu}(x)=\frac{9}{2} x^{2} \nu(\nu+1) \\
& Q_{3, \nu}(x)=\nu+\frac{9}{2} x^{3} \nu(\nu+1)(\nu+2) \\
& Q_{4, \nu}(x)=3 x \nu(\nu+1)+\frac{27}{8} x^{3} \nu(\nu+1)(\nu+2)(\nu+3) \\
& Q_{5, \nu}(x)=\frac{9}{2} x^{2} \nu(\nu+1)(\nu+2)+\frac{81}{40} x^{5} \nu(\nu+1)(\nu+2)(\nu+3)(\nu+5)
\end{aligned}
$$
\]

Note that we again have degree $=$ order, and that the exponents again advance by multiples of 3 .

Working again from

$$
Z_{n}=a Q_{n}^{\prime \prime \prime}+b Q_{n}^{\prime \prime}+c_{n} x Q_{n}^{\prime}+d_{n} Q_{n}
$$

by the established suspended evaluation iterative procedure, ${ }^{16}$ we arrive finally at

$$
\begin{aligned}
& \frac{27\left(2+3 \nu+\nu^{2}\right)}{d_{3}}\left(\begin{array}{l}
c_{8} \\
c_{9} \\
c_{10} \\
c_{11}
\end{array}\right)=\left(\begin{array}{l}
206 \\
260 \\
320 \\
386
\end{array}\right)+\nu\left(\begin{array}{l}
27 \\
33 \\
39 \\
45
\end{array}\right)+\nu^{2}\left(\begin{array}{c}
-9 \\
-9 \\
-9 \\
-9
\end{array}\right) \\
& \frac{27\left(2+3 \nu+\nu^{2}\right)}{d_{3}}\left(\begin{array}{c}
d_{8} \\
d_{9} \\
d_{10} \\
d_{11}
\end{array}\right)=\left(\begin{array}{c}
704 \\
972 \\
1300 \\
1694
\end{array}\right)+\nu\left(\begin{array}{c}
456 \\
567 \\
690 \\
825
\end{array}\right)+\nu^{2}\left(\begin{array}{c}
72 \\
81 \\
90 \\
99
\end{array}\right)
\end{aligned}
$$

[^7]We rescale by setting

$$
\frac{27\left(2+3 \nu+\nu^{2}\right)}{d_{3}} \longrightarrow 1
$$

and with the aid of

$$
\mathbb{M}=\left(\begin{array}{cccc}
8^{3} & 8^{2} & 8 & 1 \\
9^{3} & 9^{2} & 9 & 1 \\
10^{3} & 10^{2} & 10 & 1 \\
11^{3} & 11^{2} & 11 & 1
\end{array}\right)
$$

obtain

$$
\begin{aligned}
c_{n} & =\left(3 n^{2}+3 n-10\right)+(6 n-21) \nu-9 \nu^{2} \\
d_{n} & =n^{2}(3+n)+n(9+6 n) \nu+9 n \nu^{2}
\end{aligned}
$$

by virtue of which the (similarly rescaled) suspended valuations of $\{a, b\}$ become

$$
\begin{aligned}
a & =-\left(1+4 x^{3}\right) \\
b & =-18 x^{2}\left(1+\frac{2}{3} \nu\right)
\end{aligned}
$$

A final sign reversal gives

$$
\begin{aligned}
Z_{n}=\left(1+4 x^{3}\right) Q_{n}^{\prime \prime \prime} & +18 x^{2}\left(1+\frac{2}{3} \nu\right) Q_{n}^{\prime \prime} \\
& -\left[\left(3 n^{2}+3 n-10\right)+(6 n-21) \nu-9 \nu^{2}\right] x Q_{n}^{\prime} \\
& -\left[n^{2}(3+n)+n(9+6 n) \nu+9 n \nu^{2}\right] Q_{n}=0
\end{aligned}
$$

which agree precisely with the differential equations obtained (somehow!) by Ahmed Sebbar. Remarkably, we at $\nu=0$ recover the previously-encountered equations

$$
Z_{n}=\left(1+4 x^{3}\right) S_{n}^{\prime \prime \prime}+18 x^{2} S_{n}^{\prime \prime}-\left(3 n^{2}+3 n-10\right) x S_{n}^{\prime}-n^{2}(3+n) S_{n}=0
$$

—this even though the "polynomials" $Q_{n, 0}(x): n>0$ all vanish identically.
Sebbar polynomials of the fourth kind. From

$$
\left(1+3 x h^{2}-h^{3}\right)^{-\nu}=\sum_{n=0}^{\infty} P_{n, \nu}(x) h^{n}
$$

one is led to polynomials

$$
\begin{array}{lr}
P_{0, \nu}(x)=1 & \\
P_{1, \nu}(x)=0 & P_{6, \nu}(x)=\frac{1}{2}(\nu)_{2}+\frac{9}{2} x^{3}(\nu)_{3} \\
P_{2, \nu}(x)=-3 x(\nu)_{1} & P_{7, \nu}(x)=\frac{9}{2} x^{2}(\nu)_{3} \\
P_{3, \nu}(x)=\nu & P_{8, \nu}(x)=\frac{3}{2} x(\nu)_{3}+\frac{27}{8} x^{4}(\nu)_{4} \\
P_{4, \nu}(x)=\frac{9}{2} x^{2}(\nu)_{2} & P_{9, \nu}(x)=\frac{1}{6} x^{2}(\nu)_{3}-\frac{9}{2} x^{3}(\nu)_{4} \\
P_{5, \nu}(x)=-3 x(\nu)_{2} & P_{10, \nu}(x)=\frac{9}{4} x^{2}(\nu)_{4}-\frac{81}{40} x^{5}(\nu)_{5}
\end{array}
$$

in which the degree $=$ order property has been lost, as has linear independence; in those respects they stand to the Q polynomials as the R polynomials stand to the S polynomials. The P-population is, like the R-population, unattractively "straggle-toothed," though there is evidence in the preceding short list of the onset of x-exponents advancing by multiples of 3 . Nevertheless, Sebbar has observed that-demonstrably - the P polynomials satisfy differential equations quite similar to those satisfied by the Q polynomials. I am satisfied that the suspended evaluation iterative process described above would lead to Sebbar's P-equations, but for purposes of comparison am content simply to borrow from his result. We have

$$
\begin{aligned}
& \text { for the } P \text { equations } c_{n}=-\left(3 n^{2}+3 n-10\right)+21 \nu-6 n \nu+9 \nu^{2} \\
& \text { for the } Q \text { equations } c_{n}=-\left(3 n^{2}-3 n-10\right)+30 \nu-12 n \nu \\
& \text { for the } P \text { equations } d_{n}=-n^{2}(3+n)-9 n \nu-6 n^{2} \nu-9 n \nu^{2} \\
& \text { for the } Q \text { equations } d_{n}=-n^{2}(3-n)-9 n \nu+3 n^{2} \nu
\end{aligned}
$$

where again the ν-independent terms exchange places when the sign of n is reversed, but the ν-depemdemt terms are quite distinct. Remarkably, the ν-independent terms encountered in the P and Q-equations are identical to those encountered in the S and R-equations, respectively. Moreover, a previously remarked property of the P-equations pertains also to the Q-equations:

$$
\left.\begin{array}{l}
P \text {-equations } \longrightarrow S \text {-equations } \\
Q \text {-equations } \longrightarrow R \text {-equations }
\end{array}\right\} \text { in the formal limit } \nu \longrightarrow 0
$$

So far as concerns the relationship Sebbar's generating functions, which are of the forms (expression) ${ }^{-\nu}$ and \log (expression), we note that

$$
\begin{aligned}
-\nu \int \frac{1}{z^{1+\nu}} d z & =z^{-\nu} \\
\lim _{\nu \rightarrow 0}\left\{-\nu \int \frac{1}{z^{1+\nu}} d z\right\} & =1 \\
\lim _{\nu \rightarrow 0}\left\{-\int \frac{1}{z^{1+\nu}} d z\right\} & =\infty \\
\int \frac{1}{z^{1+0}} d z & =\log (z)
\end{aligned}
$$

provide a hint of what may be the root of their formal kinship.

[^0]: ${ }^{1}$ Private communications 2014 and 2017.

[^1]: ${ }^{2}$ See "Ray Mayer's reconstruction of Ahmed Sebbar's DE" (3 November 2017).

 3 "Polynomial DE Worksheet 1" (November 2017).

[^2]: ${ }^{5}$ This suspended evaluation of a appears to be characteristic of the method.
 ${ }^{6}$ It would be nice to have an inductive proof.

[^3]: ${ }^{7}$ See Spanier \& Oldham, page 196.
 8 See "Ray Mayer's reconstruction of Ahmed Sebbar's DE," page 7.

[^4]: ${ }^{10}$ The Mathematica-assisted construction of $X_{i, j}$ is instantaneous.
 11 The corresponding power interval in the theory of orthogonal polynomials is not 3 but 2; all such polynomials are either even or odd.

[^5]: 12 For computational details, see "Polynomial DE Worksheet 2" (November 2017).

[^6]: ${ }^{13}$ See again page 6.

[^7]: ${ }^{14}$ One would honor an ancient convention by writing $Q_{n}^{(\nu)}(x)$. It is for typographic convenience that I write $Q_{n, \nu}(x)$, and usually will omit explicit reference to the ν-parameter.
 ${ }^{15}$ Here Pochhammer's notation $(\nu)_{p}=\nu(\nu+1)(\nu+2) \cdots(\nu+p-1)$ would be of use.
 16 For computational details, see "Polynomial DE Worksheet 3" (November 2017).

